The influence of subglacial hydrology on the flow of Kamb Ice Stream
Narelle Baker, Poul Christoffersen and Marion Bougamont
Scott Polar Research Institute

Table 1: Observed surface velocity (m per year) at 500 km inland from the grounding line (GL).

<table>
<thead>
<tr>
<th>Ice Stream</th>
<th>Average velocity at 500 km</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIS1</td>
<td>35.0</td>
<td>±1.5</td>
</tr>
<tr>
<td>KIS2</td>
<td>40.0</td>
<td>±2.0</td>
</tr>
<tr>
<td>KIS3</td>
<td>45.0</td>
<td>±2.5</td>
</tr>
</tbody>
</table>

The influence of subglacial hydrology on the flow of Kamb Ice Stream, South West Antarctica, is illustrated in Figure 2. The red line is the approximate centreline of KIS, following the ice stream bed profile, which is based on the ice stream bed topography model of Payne and others (1991). The red line is overlaid on the bed profile of KIS (Figure 1). The ice stream bed is sourced by water from upstream, which is driven by the hydraulic potential. 

Figure 2: Location map showing the ice stream bed profile (dashed) and discharge routes (arrows). Black line on Mercator projection of the Ross Ice Streams, West Antarctica. Annals of Glaciology, 31(34):1–6.

The influence of subglacial hydrology on the flow of Kamb Ice Stream, South West Antarctica, is illustrated in Figure 2. The red line is the approximate centreline of KIS, following the ice stream bed profile, which is based on the ice stream bed topography model of Payne and others (1991). The red line is overlaid on the bed profile of KIS (Figure 1). The ice stream bed is sourced by water from upstream, which is driven by the hydraulic potential. 

Figure 2: Location map showing the ice stream bed profile (dashed) and discharge routes (arrows). Black line on Mercator projection of the Ross Ice Streams, West Antarctica. Annals of Glaciology, 31(34):1–6.

The influence of subglacial hydrology on the flow of Kamb Ice Stream, South West Antarctica, is illustrated in Figure 2. The red line is the approximate centreline of KIS, following the ice stream bed profile, which is based on the ice stream bed topography model of Payne and others (1991). The red line is overlaid on the bed profile of KIS (Figure 1). The ice stream bed is sourced by water from upstream, which is driven by the hydraulic potential. 

Figure 2: Location map showing the ice stream bed profile (dashed) and discharge routes (arrows). Black line on Mercator projection of the Ross Ice Streams, West Antarctica. Annals of Glaciology, 31(34):1–6.

The influence of subglacial hydrology on the flow of Kamb Ice Stream, South West Antarctica, is illustrated in Figure 2. The red line is the approximate centreline of KIS, following the ice stream bed profile, which is based on the ice stream bed topography model of Payne and others (1991). The red line is overlaid on the bed profile of KIS (Figure 1). The ice stream bed is sourced by water from upstream, which is driven by the hydraulic potential. 

Figure 2: Location map showing the ice stream bed profile (dashed) and discharge routes (arrows). Black line on Mercator projection of the Ross Ice Streams, West Antarctica. Annals of Glaciology, 31(34):1–6.

The influence of subglacial hydrology on the flow of Kamb Ice Stream, South West Antarctica, is illustrated in Figure 2. The red line is the approximate centreline of KIS, following the ice stream bed profile, which is based on the ice stream bed topography model of Payne and others (1991). The red line is overlaid on the bed profile of KIS (Figure 1). The ice stream bed is sourced by water from upstream, which is driven by the hydraulic potential. 

Figure 2: Location map showing the ice stream bed profile (dashed) and discharge routes (arrows). Black line on Mercator projection of the Ross Ice Streams, West Antarctica. Annals of Glaciology, 31(34):1–6.

The influence of subglacial hydrology on the flow of Kamb Ice Stream, South West Antarctica, is illustrated in Figure 2. The red line is the approximate centreline of KIS, following the ice stream bed profile, which is based on the ice stream bed topography model of Payne and others (1991). The red line is overlaid on the bed profile of KIS (Figure 1). The ice stream bed is sourced by water from upstream, which is driven by the hydraulic potential. 

Figure 2: Location map showing the ice stream bed profile (dashed) and discharge routes (arrows). Black line on Mercator projection of the Ross Ice Streams, West Antarctica. Annals of Glaciology, 31(34):1–6.

The influence of subglacial hydrology on the flow of Kamb Ice Stream, South West Antarctica, is illustrated in Figure 2. The red line is the approximate centreline of KIS, following the ice stream bed profile, which is based on the ice stream bed topography model of Payne and others (1991). The red line is overlaid on the bed profile of KIS (Figure 1). The ice stream bed is sourced by water from upstream, which is driven by the hydraulic potential. 

Figure 2: Location map showing the ice stream bed profile (dashed) and discharge routes (arrows). Black line on Mercator projection of the Ross Ice Streams, West Antarctica. Annals of Glaciology, 31(34):1–6.

The influence of subglacial hydrology on the flow of Kamb Ice Stream, South West Antarctica, is illustrated in Figure 2. The red line is the approximate centreline of KIS, following the ice stream bed profile, which is based on the ice stream bed topography model of Payne and others (1991). The red line is overlaid on the bed profile of KIS (Figure 1). The ice stream bed is sourced by water from upstream, which is driven by the hydraulic potential. 

Figure 2: Location map showing the ice stream bed profile (dashed) and discharge routes (arrows). Black line on Mercator projection of the Ross Ice Streams, West Antarctica. Annals of Glaciology, 31(34):1–6.

The influence of subglacial hydrology on the flow of Kamb Ice Stream, South West Antarctica, is illustrated in Figure 2. The red line is the approximate centreline of KIS, following the ice stream bed profile, which is based on the ice stream bed topography model of Payne and others (1991). The red line is overlaid on the bed profile of KIS (Figure 1). The ice stream bed is sourced by water from upstream, which is driven by the hydraulic potential. 

Figure 2: Location map showing the ice stream bed profile (dashed) and discharge routes (arrows). Black line on Mercator projection of the Ross Ice Streams, West Antarctica. Annals of Glaciology, 31(34):1–6.